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Abstract

The multigrid one shot method for optimal control problems, governed by elliptic

systems, is introduced for the infinite dimensional control space. In this case the con-

trol variable is a function whose discrete representation involves increasing number of

variables with grid refinement. The minimization algorithm uses Lagrange multipliers

to calculate sensitivity gradients. A preconditioned gradient descent algorithm is ac-

celerated by a set of coarse grids. It optimizes for different scales in the representation

of the control variable on different discretization levels. An analysis which reduces

the problem to the boundary is introduced. It is used to approximate the two level

asymptotic convergence rate, to determine the amplitude of the minimization step,

and the choice of a high pass filter to be used when necessary. The effectiveness of the

method is demonstrated on a series of test problems. The new method enables the

solutions of optimal control problems at the same cost of solving the corresponding

analysis problems just a few times.
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1 Introduction

Numerous computational methods have been developed for predicting the performance of

physical systems. For engineering design purposes a modification of the system configura-

tion that results in optimal performance is required. However, computations of large scale

optimal control problems are extremely time consuming and in many cases not practical.

The effort to overcome such computational difficulties is done in the direction of devel-

oping faster computers, on the one hand, and in improving the performance of existing

algorithms, on the other hand.

An important and difficult class of optimal control problems are optimal shape design

(OSD) of aerodynamic systems [2, 8, 9, 10, 11]; for example, the design of a wing shape.

Under certain assumptions, OSD problems can be reduced to simpler optimal boundary

control (OBC) problems using the small disturbance approximation [6]. The resulting

problems involve a fixed physical domain with control variables that are defined as boundary

data. The problem is to minimize a cost function under certain constrains, which are a set

of PDEs called "state equations". The cost function is defined to measure the performance

of the physical system.

A standard solution process involves an iterative algorithm where each iteration is com-

posed of two steps. First, the control variables are updated with the "sensitivity gradients"

which are the gradients of the cost function with respect to the control variables. Then the

state variables are updated by solving the constraint equation with the new values of the

control variables. The repeated solution of the constraint PDE makes this computation

extremely time consuming and in some cases not practical.

Several methods were developed to calculate the sensitivity gradients. Among them

is the "adjoint method" [5, 9, 11]. In the adjoint formulation, a Lagrangian is defined

together with Lagrange multipliers, which are also called "costate variables". Costate and

design equations are derived from the variation of the Lagrangian, and together with the

state equation form the necessary conditions for a minimum. The sensitivity gradients are

the design equation residuals calculated with the solutions of the state and costate PDEs.

The adjoint method was first applied to aerodynamic design by A. Jameson in 1988 [9]. A

multigrid (MG) solver was used to accelerate the convergence of the solution of the state

and costate equations. This reduces the computational cost of each optimization step to

O(N) operations (where N is the number of computational grid points) but does not reduce

the number of iterations to reach the minimum.

Originally MG methods were developed to accelerate the convergence rate of the nu-

merical solutions of PDEs [3, 7, 14]. A. Brandt suggested in 1984 [4, page 119] to apply MG

methods for optimization problems in the framework of a full multigrid (FMG) algorithm

where the optimization problem should be solved on coarse levels and interpolated to finer

levels until the finest level is reached. It is further suggested in [4] to treat the optimization

problem on all levels where on the finer grids the optimization step should be done locally

if possible and the smooth corrections of the error should be done during the coarse grid

correction. The whole problem should be solved in one application of the FMG solver.



The adjoint and MC methods werec.ombined to solve an optimal control problem, in

"one shot", for the finite dimensional control by S. Ta'asan in 1991 [12]. In the finite dimen-

sional approach, the control variables are represented as a finite sum of some preassigned

base functions. The main idea in [12] is to represent the state, the costate and the design

equations on coarser grids with the full approximation scheme (FAS)[3]. It is shown in [12]

that in general the use of Lagrange multipliers is essential to achieve acceleration of the fine

grid solution process by coarser grids. The algorithm optimizes the control variables on

coarse grids, and thus, eliminates the repeated solution of fine grid equations in every op-

timization step. The one shot algorithm was applied successfully to the small disturbance

approximation of all aerodynamic wing design problem in a subsonic flow by S. Ta'asan,

G. Kuruvila and M. D. Salas (1992) [1:3]. The performance of the algorithm in [13] was a

substantial improvement in terms of computational cost. However, the performance of the

finite dimensional one shot algorithm depends on on the choice of base functions and on

the level on which the different control variables were optimized.

In this paper we extend the multigrid one shot algorithm to the infinite dimensional

control. We introduce an analysis which reduces the problem to the boundary. The analysis

is used to to determine a minimization step which reduces mainly the high frequency errors

in the control variables. In elliptic systems such a minimization step requires an update of

the state and costate solutions only in a local area neighboring the boundary. Based on

the above, two level analysis is done to approximate the convergence performance of the

algorithm for a given problem and discretization. Computational demonstrations of the

algorithm are given for a set of test problems in which the PDE constraint is elliptic.

2 A Single Grid Algorithm for the Solution of Opti-

mal control Problems

2.1 Problem Definition

Let f_ be a bounded open set of _a with smooth boundary F and let ¢ be a real valued

function on fL Let/.,/and 142 be Hilbert spaces of real valued functions which are defined

on F and f_ respectively.

The problem is to find the "control variable", u C/4, and the "state variable", ¢ C IV,

such that a given cost function, F(u, (a(u)), defined on b/ x )IV, will be minimized. Here

4) satisfies an elliptic PDE which is defined on f_ and will be referred to as the "analysis

problem" or the "state equation":

min_,eu F(u, ¢(u)) on F
L(¢,u) = 0 on a (2.1)

Note that the control variable is defined on the boundary F, therefore all "optimal boundary

control" (OBC) problem is considered.



2.2 Derivation of the Necessary Conditions for a Minimum

We apply the adjoint method to the optimal boundary control problem (2. l). The variable

space is enlarged by adding Lagrange multiplier functions or costate variables denoted by

k. A Lagrangian is defined to be the sum of tile functional and a linear term in the costate

variables which vanishes as the constraint equation is satisfied;

E(O,A,u) = F(u,¢)- (X L(¢,u)). (2.2)

A perturbation of the Lagrangian with respect to all tile variables independently, i.e., state,

costate and control, results in a variation of tile Lagrangian:

a a + e£
u _u+eft

with (_, _ c L2(fl), fi¢ H and e is a small real parameter. Tile variation of the Lagrange

fimction, _E, in the first order approximation in e, is given in the following form:

where L_, and L_, are the adjoint operators of L¢ and L_, respectively. The requirement

that the first approximation terms vanish results in the necessary condition for a minimum

which will be referred as the state, the costate, and the design equations:

,_'tate : L(c_,u) = 0

Co.state: L},(¢,u)A+F_(¢,u)=0 (2.5)

control : L_,(¢, u)A + F_(¢, u) = 0.

From here on we will use the notation A(u) for the design equation residual, i.e.,

A(_,) = -n;(¢(u),u)_(u)- F_(¢(u), u) (2.6)

where ¢(u) and A(u) in (2.6) are solutions of tile state and costate equations.

2.3 The Sensitivity Gradients

If the state and costate equations are satisfied, then the variation of tile cost function is

given by (see Eqn.(2.4)):

_iF= - {_,.A(u)) r . (2.7)

This equation implies that the gradient of the fimctional with respect to the control vari-

ables is given by -A(u):

V,F(u) = -A(u). (2.8)

Therefore, a perturbation of the control variables with the control residuals multiplied by

a small paraIneter, namely fi = eA(u), will result in a reduction of tlle cost function by

_iF = -allAIl_ + O(_2). (2.9)
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2.4 Discretization

When discretizing the problem it is possible either to derive the necessary conditions for a

minimum in the continuous formulation and then discretize or to discretize the functional

together with the state equation and then derive the discrete necessary conditions. In the

latter case the discrete minimization problem is given by:

min_h Fh(u h, ¢h) on F h

Lh(¢l',u h) = 0 on 12h. (2.10)

As the grid mesh size, h, goes to zero, solutions of both approaches should converge to the

differential solution. However, for finite mesh size discretization and necessary conditions

do not necessarily commute. The solutions of both should be within the discretization error

from the differential solution. For simplicity in this paper we used the first possibility. The

discrete state, costate and design equations are:

Lh(¢ h, u h) = 0 on 9t _

L_*(¢h, uh)A h + F_'(¢h,u h) =0

h* h h h lth) =L_ (¢ ,uh)._h+ F_'(¢ , 0

on 9th (2.11)
on F _.

We define Ah(u h) similarly to (2.6).

2.5 A Gradient Descent Algorithm

The following is a gradient descent minimization algorithm which follows immediately from
the above.

1. Start with an initial approximation for the control, Uoh.

2. Solve the state equation for Ch.

3. Solve the costate equation for ih.

4. Compute the amplitude of the perturbation, _, with a line search,

and update the control variables: uh _-- uh + 8 j4h(uh)•

5. If the residuals of the state, the costate and the control

equations are greater than some preassigned value, in L2 norm,

then goto 2; else stop.

Note that steps 2, 3 and 5 consist of a global computation over the whole domain.

The complexity of this algorithm is given by O(MVN_), where M is the number of

control parameters, N is the number of grid points, and p and l are integers which depend

on the problem and the PDE solver which is used to solve the state and costate equations.

For example, if a MG solver is used to solve the PDEs then l = 1.
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3 A Multigrid One Shot Minimization Method

The gradient descent algorithm is applied on a sequence of nested grids, where each coarse

grid accelerates the convergence rate of its finer grid. On each grid two processes are

employed: relaxation and coarse grid correction of all the variables, including the control

variables. On coarse grids the state, the costate and the design equations are restricted

from the finer grid with the full approximation scheme [3].

3.1 Relaxation

On each level a relaxation is performed on the state, costate and control variables. The

state and costate equations, which are elliptic PDEs, are relaxed by a Gauss-Seidel or

damped Jacobi relaxations. The control variables are relaxed by

u h _ u h + _h_'hAh(Uh), (3.1)

where of flh and ._-h are chosen to guarantee good smoothing for the control variables, as

discussed in See.4, and where .Ah(u h) are the residuals of the design equation. This step

should be followed by an update of the state and costate solutions. The construction of

/_h and .T"h is done so that the boundary data is updated with a high frequency dominated

quantity.
In elliptic systems a perturbation of the boundary condition with a Fourier mode e i_x

has an exponential decaying effect on the interior solution of the form e -_(_)y, where y is the

distance from the boundary and cr(w) is a positive monotonically increasing function of w

for large Iwl, [1]. For the Laplace equation the decaying rate is given by e -I_lu. Therefore, in

an MG scheme it is preferable to perturb the boundary condition with only high frequency

modes relative to the given level. In that case only local relaxations will be needed in

order to update the solutions after each optimization step, resulting in an order O(N g-_)

operations for one optimization step. N is the number of interior grid points on a given

level, and d is the space dimension. On the coarsest grid the relaxation of the control

variables is given in Sec. 2.5 The PDEs are solved over the whole domain thus taking into

account the lowest frequencies. In that way the set of grids is complete in the sense that

all Fourier frequencies are treated at some level.

3.2 The Coarse Grid Equations

The restriction of the necessary condition for a minimum to the coarse grid is done with

the full approximation scheme (see appendix).

Coarse Grid State Equation

LH ¢ H= f_

fff = ?H £h-h + h) oN
r_(¢h) LH'H h H J, h= I h ¢ - I h L ¢ .

(3.2)
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where1-1,14and lff are restriction operators which are defined on the interior grid points of

the domain _/, and which are not necessary identical [3].

(_'oarse (grid C'ostate Equation

C'oarse Grid design equation

on flH (:3.:3)

L_,H$ H + F_ = fH
tt

f_ . h ,, At,, ul,)= L, f_ + _/;:(_',
:tq_ ,A h, =L_ I_A"+F y(Ihq_," h inAh,, ,]flu")

___H *h h h h tth)]I h [L. A +F_'(4) ,A h,

on F H (3.4)

where [l_ and [H are restriction operators which are defined on tile boundary F h, and

where the right hand sides f_', f_' and f_' are zero on tile finest grid.

3.3 The Coarse Grid Cost Function and Gradient

It can be shown that tile full approximation scheme coarse grid equations, (3.2-3.4), are the

necessary conditions for a mininmm of tile following constrained minimization problem:

,nin_,.FH(uH,c_H)--(fff, q_H)w-- (f_ ,uH)u
C"(4", ,,") = f_' or,_",

on F H
(3.5)

where f_, f_ and f_ are defined in Eqns.(3.2), (3.3) and (3.4). This implies that tile

coarse grid gradient is given by

H H ,AHV ,,,,F = (u" )

A"(.") = i_"- (L:"A"+ F_') (3.6)

Thus the relaxation defined by (3.1), on coarse grids, converges to tile solution of the coarse

grid problem,

MH(u ") = f_- (L*_HAH + Fy). (3.7)

3.4 The One Shot Minimization Algorithm

The problem is solved in one application of an FMG solver. The FMG scheme uses a Vcycle

scheme in order to solve the problem on each level. The Vcycle is composed of recursive

applications of a relaxation and coarse grid correction. In the following the relaxation,

Vcycle and FMG schemes are presented.
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Relaxation

A relaxation sweep, 7_h, is defined by the following:

I. Perform one relaxation of the state equation for _h.

2. Perform one relaxation of the costate equation for A h.

3. Update the control variables with the design equation residuals,

u h ,_. uh + _h y.h Ah(uh).

4. Perform a few local relaxations of the state and costate

equations in a narrow strip near the boundary.

Vcycle

The _llowing is a vh(vl, ui) cycle where ul and v2 are integers (in the numerical demon-

strations we used vl = 2 and v2 = 1). The initial grid is the finest, with a mesh size h.

I. Perform vl relaxation sweeps, _h.

2. Restrict the state, the costate and the design equations

to the coarse grid (Eqns.(3.2),(3.3) and (3.4), with H= 2h).

Rescale h-_2h.

3. If the coarsest level is not reached goto I.

4. Solve the problem with the standard minimization algorithm

in Sec. 2.5.

5. Interpolate the coarse grid correction to the finer grid:

¢h ¢h + i#h(¢2h 2,, ,, nh--/h ¢ ) on ,

--*h /_ J On ,

+ - on
h

Rescale h -* _.

6. Perform v2 relaxation sweeps, 7£h.

Z. If the finest grid is reached then stop, else goto 5.

FMG cycle

The _llowing is a n-FMG(vl, v2) cycle to solve the problem with M grids. The coarsest

mesh size is denoted by h_.

1. Start with the coarsest grid, (h = hc), and solve the problem with

the standard minimization algorithm in section 2.5.

2. Interpolate the solution to a finer grid rescale h-_ h* 2 "

3. Perform n times vh(ul,Vi) cycles.

4. if the finest grid is reached then stop, else goto 2.
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The computational cost of the cycle is O(N) operations, and it reduces the error of the

state, costate and control variables by an order of magnitude (in L2 norm).

4 Fourier Analysis of the Convergence Rate

Fourier analysis of the minimization algorithm is described next. The evolution of high

frequency errors, in the control variables, is considered in half space. Then in a standard

procedure the problem in half space is reduced to the boundary. A relation between errors

and residuals of the design equation, on the boundary, is derived. With this relation the

relaxation and coarse grid correction of the control variable are analyzed.

4.1 Reduction to a Boundary Problem

We assume that the state and costate equations are satisfied when the control variables are

updated. We are interested in the amplification factor of the error in the control variables

as a result of this process. In the vicinity of the boundary, the non-smooth errors can be

analyzed using half space geometry. This approximation is valid since in elliptic problems

non-smooth Fourier modes decay exponentially into the interior (see Sec. 3.1). Consider a

two-dimensional geometry, where the x-axis is parallel to the boundary and the y-axis is in

the normal direction. The errors of the state and costate variables satisfy a homogeneous

equation in the interior at every optimization step, namely

Ch(x,y) = if__. Ch(O,y = O)e'*'Ol%-,,CO)ulhdO

_h(x,y) = ff_, _h(O,y = O)e'*Ol%-_(O)_lhdO

= f'.

where (7(0) and a(O) are determined by the interior state equation:

L_eix°lhe -a(°)y/h = 0

L_* eix°lhe -_(°)u/h = O.

(4.1)

(4.2)

By substituting these expressions into the boundary conditions of the state and costate

error equations, we obtain relations between ch(O,y = O),_h(O,y = 0) and fib(o), which

are all boundary quantities. Thus, a reduction to a boundary problem has been obtained.

From the boundary problem we can deduce a relation between the residuals of the design
equation and the errors in the control variables:

fi.h(0) = Th(0)t_h(0). (4.3)

7'h(O) is the symbol of the Hessian of the cost function, F, subject to the PDE constraint.

This symbol determines the smoothing properties of the control variables relaxation as well

as the effectiveness of the coarse grid correction, as is discussed next. Note that the explicit

form of the operator, T h, is not known, and in general is a non-local operator. However,

the computation of its symbol is straightforward.
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4.2 The Relaxation

From Eqns.(3.1) and (4.3) it follows that the relation between the errors in the control

variables before and after the relaxation is given by

^ h ^ h ^ hu,,ew = R (O)Uot, , (4.4)

where the relaxation symbol/_h(O) is given by

Rh(O) = 1 + flh_'hTh(O). (4.5)

For multigrid proposes it is desirable for f_h(o) to have small values ill the high-frequency

range, (._ _< 1el_< In that case the relaxation will reduce effectively the high-frequency

errors of the control variables prior to restricting its values to the coarse grid.

Choice of High Pass Filter

In some cases the relaxation without the use of a high pass filter (HPF), .T"h, does

not smooth the errors effectively for any choice of fib. In that case an HPF is introduced

as a preconditioner of the control residuals. If chosen properly, the symbol .T'h(O)Th(O) is

dominated by the high frequencies, and a proper choice of flh will result in good smoothing.

The HPF is particularly effective for problems in which the transformation Th(O) is a

monotonically decreasing function which has small values in the high frequencies. Without

the use of a proper HPF, high-frequency oscillatory errors might enter the control variables

during the computation.

Evaluation of the optimization step size flh

In a multigrid cycle the relaxation should be effective mainly in the high-frequency

range. The relaxation parameter/3 h is chosen so ti_at the maximum of If_h(o)l in the high

frequencies will be minimal, that is,

min max I1 +/3hfi'hTh(0)l- (4.6)
B_'_-<lel_<-

One can show that if the symbol Th(0) does not change sign, then/3 h is given by

2
/3h = , (4.7)

where (_'hTh),,,i, and (.T'hT_h),,_,, are the minimal and maximal values of _'h(O)Th(O) range

(2 --< I01 < a-). In most practical problems the symbol _'h7%(0) is monotone. Thus flh is

given by
2

= -- . (4.8)

4.3 Two Level Analysis

The process for solving tile optimal control problem is equivalent to a process of solving the

equation , The h = v h, where eh and r h are the errors and residuals of tile design equation,



under the assumption that the state and costate equations are satisfied. Using standard

multigrid arguments the two level convergence matrix is given by (See Appendix)

Mh(O) = Rh(O)"'Ch(O)Rh(o) "2, (4.9)

where Rh(O) is the relaxation matrix

Rh(O) = ( l + /3hfi'hTh(O) 0 )0 1 + /3hb_h2bh(0 + re)
(4.1o)

and ch(o) is the coarse grid correction matrix given by

(10)( ) ( )Ch(o) = 0 1 I_(0 + re) TH(20) -' (l_(O) lff(O + re) ) Th(O) 0' o + re)

The asymptotic convergence rate is given by the maximum eigenvalue of tile matrix Mh(O),

where 0 is ill the range 0 < 101 _< re.

5 Numerical Examples

In this section we demonstrate the performance of the multigrid one shot algorithm and

apply the analysis developed ill Sec.4, on a series of test problems. The problems are solved

in a two-dimensional domain which is defined by

f_=((x,y) :O_x_<l; 0<y< 1}.

The constraint is the Poisson equation and the boundary conditions are periodic in

the x-direction and Dirichlet on the lower boundary, y = 0. The minimization problem is

defined on the upper boundary, y = 1.

In subsection 5.1 we solve an optimal control problem of the Dirichlet boundary con-

dition with four different discretizations. The purpose of this example is to study the

dependence of the convergence behavior on the choice of discretization. Asymptotic two

level convergence rates are estimated with Fourier analysis for the different discretization

schemes. The predicted and the actual convergence rates are compared.

In subsection 5.2 we solve an optimal control of the Neumann boundary condition for

two different boundary conditions. The purpose of this example is to show the use of

the HPF to achieve an efficient smoother for the control variables. The two boundary

conditions correspond to qualitatively distinct transformations between error and residuals

of the control equation. The two level analysis is used to determine a proper HPF.

5.1 The Dirichlet Boundary Control Problem

Consider tile minimization problem is defined by

min/u=l(_-n-f*(x))2dx+_Tfu=,u2dx',4*) (5.1)

10



where ,1 is a fixed non negative parameter, f*(z) is a given function and where ¢ satisfies

the state equation

A4 = f on 9t
¢=_(x) on y=l
¢ = ¢0 on y = 0.

It is easily verified that the the costate equation is given by

{A+2 -f*(x))--0 on y--1

A=0 on y=0

and the design equation is given by

0A
.,4= On 2r/¢=0 on y= 1.

(5.2)

(5.3)

(5.4)

5.1.1 Discretization

We have used four different discretizations for the minimization problem. For three dis-

cretizations all unknowns were defined on the vertices the grid lines (referred to as the

"vertex grid"). The control variables are defined on the intersections of the grid with the

boundary. In the "cell centered grid" the variables are defined on the centers of the grid

cells. The grid is extended out of the domain and virtual cell-centered points are defined

on the neighboring exterior of the domain. A Dirichlet boundary condition is given for the

average of the variables neighboring the boundary. The control variables are defined on the

centers of the segments connecting the intersection of the grid with the boundary. Note

that in the multigrid scheme, the vertices of the grids on different scales are nested while
in the cell-center case the cells faces are nested.

In the vertex grid we use three different approximations for the normal derivative on

the boundary:

l) A first order approximation for the normal derivative

VX1 : 0¢ ¢;,2 - ¢i,,- (5.5)
On_ h

2) A second order approximation for the normal derivative

0¢ 3
_ -_¢_,, + 2¢1,2- _¢_,3 (5.6)

VX2 : Oni h

3) A use of a virtual point out of the domain, were its value is determined with the

application of the interior operator on the boundary

0¢ _ ¢_,, - ¢__, (5.7)
0n _ 2 h

VX3 :

A cell centered discretization

CC: 0¢ _ ¢_,_ - ¢i,-½
On i h

(5.8)

il



5.1.2 Reduction to the Boundary

In ttle following we analyze the design equation of the Dirichlet boundary control problem

in the discrete space. We use a second order finite difference approximation of the Laplacian

given by

1(1)- _ 1 -4 1 . (5.9)
1

In that case L_ = L_* and, therefore, a(O) = a(O). The term e_(°) in Eqn.(4.1)satisfies the

following second order equation (see Eqn.(4.2))

e_(°) + (-4 + 2cos 0) + e -°(°) = O. (5.10)

The Fourier Symbol of the Normal Derivatives

The normal derivatives, which appear ill the design equation, have the following Fourier

symbols for the different discretizations:

_h e -_(°) -- 1

VXl : _(0) - h

5h 1 e723(0) + 2e-°(O _ _
2 v

vx2: h
/_h e-a(0) _ el(0)

VX3 : _(0) = 2h

o_h e-½_(e) _ e½_(o)

cc: = h

(5.11)

(5.12)

(5.13)

(5.14)

The Fourier Symbol of the Design Equation

In terms of the normal derivatives the transformation 55h(0) (see Eqn.(5.4)) is given by

7'"(0) = ,(_n(O)) + q]. (5.15)

In this case the calculation of the amplitude of the minimization step, fib, given by Eqn. (4.8)

reduces to
1

/3n = (5.16)
2 dn 2+ +

In Fig.1 the relaxation symbol /_h(0) = 1 + 13hTh(O) is plotted for the above four

discretizations. For all four discretizations the relaxation reduces the high frequency errors

by a factor.smaller than 0.5.

Fig.2 depicts the maximal eigenvalue, IAI,,,_, of the convergence matrix (4.9) as a

function of the number of minimization steps, v, on a given level. The factor by which the

error is reduced as a result of a two level multigrid cycle is bounded by ]AI,_. It is implied

by Fig.2 that the cell-centered (CC) and second order vertex (VX2) schemes are expected

to have a better performance than the other vertex schemes.
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5.1.3 Convergence Performance

In the numerical tests the problem (5.1)-(5.2) was solved for the four discretizations (5.5)-

(5.8). In this problem there was no need to use a high pass filter since the transformation

_bh(0) is dominated by the high frequencies in all four discretizations. The minimization

step amplitude,/3 h, given by Eqn.(5.16) was used in the computations. The multigrid one

shot algorithm was tested using between two and seven levels. The two levels convergence

is compared with the convergence predicted by the analysis. In all the tests the residuals

of the state, the costate and the design equations were computed in L2 norm.

In the two levels test the finest grid was composed of 2 7 × 2 7 grid points and the coarsest

grid was composed of 2 6 × 2 6 grid points. The parameter 77was set to zero. In Fig.3 the two

level analysis and the actual convergence rates are compared and the similarity between

them is well apparent.

In the multilevel test the fine grid was composed of 2 m × 2TM points, with m = 5, 6, 7, and

the coarsest grid was composed of 2 x 2 grid points. The tests with different choices of rn

were done in order to check if the algorithm is mesh size dependent. All the results in Fig.4

were done with a cell-centered discretization. Since the case 77 = 0 in (5.1) corresponds

to a trivial problem, the case 77 = 1 was tested, although in principle the results should

not be different. Fig.4 A shows the convergence performance of the analysis problem (5.3).

Figs.4 B and C show the convergence performance of the optimization problem (5.1) with

77 = 0 and rI = 1, respectively. The depicted residuals in 4 B and C are the average of the

computed state, costate, and design equations residuals.

In all problems the error was reduced in each Vcycle by an order of magnitude, where

each Vcycle has a computation complexity of O(N).
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5.2 The Neumann Boundary Control Problem

In the following examples we compute the Neumann boundary condition on the boundary

y = 1 such that the values of the solution ¢ on that boundary will match some given
function.

The minimization problem is defined by:

u(x) Jy=l
(5.17)

where ¢ is satisfying the state equation

A¢=f onL ¢0F(u)= on y=lon y=0.

(5.18)

We study the above problem for two different right hand sides of the boundary condition

Fl(u) = u

F2(u) = u_:. (5.19)

It is easily verified that the the costate equation is

AA=0 on
OA

-_-g_+2(¢-f*(x))=0 on y= 1

A=O on y=0.

(5.20)

The design equation is given on the boundary y = 1 for the two right hand sides, in the

corresponding order, by

.A 1 = --A = 0

A2 = A= = 0. (5.21)

Discretization The state and costate variables were discretized on a cell centered grid.

The control variables are defined on the centers of the segments connecting the intersection

of the grid with the boundary for the first case: FI (u) = u. In the second case, F.2(u) = u_,

the control variables are defined on the intersections of the grid lines with the boundary.

5.2.1 Analysis

The symbols of the transformations Th(0) in (4.5) and the proper amplitudes, fib, calculated

with Eqn.(4.8) for the different boundary conditions in (5.19) are given by

-
2 1 --cos 0

= -,/6- 2cosO
• _1 -- 4
, h' (,/_+,¢_) . (5.22)
; f12 = 2
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One can immediately observe that in the first problem the transformation symbol, _bh(0),

is not dominated by the high-frequencies. This means that no choice of flh can result in

a relaxation with good smoothing properties, since high-frequency errors will have a low
^ h 2

weight.... in the residuals of the design equation For example, T_(r) = - :F_ approaches zero

with grid refinement; therefore one should expect very slow convergence for high-frequency

errors. For this case the two level analysis predicts a non-converging scheme, i.e., the

maximal eigenvalue, IAI,,,_, of the convergence matrix (4.9) is greater than one.

In the second problem there is a high-frequency dominance in the symbol _b_'(0). There-

fore one could expect that a few local relaxations near the boundary are needed after each

perturbation of the control variables. In this case the two level analysis predicts the same

convergence rate as in the analysis problem, see Fig.6B.

5.2.2 Use of a High Pass Filter

In the first test problem, where Fl(u) = u, we can perturb the boundary data with, Dx_.A,

instead of ,4, where D_ is a second order tangential derivative. In this case the symbol of

the design equation will become

= v/6- 2cos(O), (5.23)

resulting in a high frequency dominant symbol. The relaxation parameter changes and is

given by
2

/3_'(D_)- V_+v/- _. (5.24)

A use of a higher order operator such as a fourth order tangential derivative, 2- = D_,

results in

= - 2 - 2cos(O)(1- cos(O)) (5.25)
with

h 2

flh t D _ _ (5.26)
v +2v 

The two level analysis gives a much better convergence performance for the first choice, see

Fig.6A.

5.2.3 Convergence Performance

The convergence performance of the Neumann boundary control problem is tested for the

two cases of boundary condition.

In Fig.7A, the convergence of the optimal control problem (5.17)-(5.18), with F(u) = u,

is depicted. It is clear from Fig.TA that when using a HPF of the form 2- = Dx_ the

converegnce rate is better than that achieved when using 2- = D_, as predicted by

the analysis (Fig.6A). Without using a HPF, (2" = I), the algorithm didn't converge and

high-frequency oscillatory errors were observed to dominate the solution.
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Figure 5: The symbol of the control variables relaxation, for the Neumann boundary control

problem (5.17)-(5.18). In Fig.A. two different HPF are used, ((5.23) and (5.25)), with their

appropriate relaxation parameter/3/t , (5.24) and (5.26).

The two level analysis predicts that if the boundary condition is changed to F(u) = u_.

in Eqn.(5.18) than no HPF is needed for the problem to converge. Fig.7B shows that this

is indeed the case.

6 Conclusion

We have developed a multigrid one shot algorithm to solve the infinite dimensional optimal

control problem. An analysis, which is based on tlle reduction of the problem to the

boundary, was performed both to predict the convergence rate of a two grid algorithm and to

determine the tninimization step. Thus, all expensive line search on every minimization step

was not required on fine levels. Numerical demonstrations on a series of two dimensional

test problems were performed. In each test problem the amplitude of the tile minimization

step on fine levels, /3h, and a proper high pass filter (HPF), 9rh, was determined using

the analysis. Comparison of the two level convergence rates and two level analysis shows

agreement within a reasonable error. We find this analysis a simple and powerful tool. In

each problem, the minimum was reached at a cost of solving the analysis problem just a

few times, independent of grid size.
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A A Short Review of Multigrid Methods for Solving
PDEs

The main idea of muttigrid is to solve the problem on a set of nested grids. On each

grid there are two processes: relaxation and coarse grid correction (CGC). The relaxation

smooths the errors while the CGC eliminates effectively the smooth errors. In that way

a very efficient algorithm is achieved which reaches the discretization error in O(N) op-

erations, where N is the number of interior grid points. In the following we refer to the

solution of a discrete elliptic PDE given by

Lh¢l_ = fh, (A.1)

where i_ and I H

by

where h is the mesh size.

Coarse Grid Problem

For non-linear problems the coarse grid equations are approximated by the full approx-

imation scheme (FAS):

: T h{'lJt'_ (A.2)LH¢ H IH f h + L_V" J,

where I H and I h denote the restriction and interpolation operators, respectively, and where

7"h is defined by

rLh(¢ '_) = LH]IH¢ h- I_Lh¢ h, (A.3)

are not necessary the same [3]. The coarse grid correction (CGC) is given

= - I,, Cord). (A.4)

Smoothing Properties

In the infinite space mode analysis the Fourier symbol of the differential operator,

L h, is denoted by Lh(O). For standard MG to work properly one must have h-elliptic

discretization, i.e.

ILh(O)[ > (7 0 ,,_ for IIol < 7r (A.5)
-- h

where Lh(0) is the Fourier symbol of L h and where C is a constant. The consequence of

the condition in (A.5) is that the relaxation will be effective mainly for the high frequency

errors. For the Jacobi relaxation, the relaxation operator, R h, is related to the difference

operator, L h, by

R h = I - flL _, (A.6)

where I is the identity operator and fl is a parameter. The smoothing rate of the relaxation

is determined by

max IRh(0)l _< (7,o < 1, (a.7)

where the constant Co is the predicted smoothing factor (typical value is 0.5).

Two Level Analysis
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For tile linear casea two level mode analysis call be done to predict tile convergence

rate of tile multigrid cycle. Tile full cycle symbol is give by

Nt(O) = k"(0)"_[I- I_(o)LI4(2o) -1 ],7(o)L'_(o)1[¢'_(o) "' , (a.8)

where _h stands for the relaxation operator, I is the unit matrix, L H stands fi)r the coarse

grid operator, and 1/1 and v.2 are integers.

The convergence rate of the cycle is give by

if= sup 1151(0)ll. (A.9)
o<1o1<__-
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